Abstract

Phase slips are a typical dynamical behavior in coupled oscillator systems: the route to phase synchrony is characterized by intervals of constant phase difference interrupted by abrupt changes in the phase difference. Qualitatively similar to stick-slip phenomena, analysis of phase slip has mainly relied on identifying remnants of saddle-nodes or "ghosts." We study sets of phase oscillators and by examining the dynamics in detail, offer a more precise, quantitative description of the phenomenon. Phase shifts and phase sticks, namely, the temporary locking of phases required for phase slips, occur at stationary points of phase velocities. In networks of coupled phase oscillators, we show that phase slips between pairs of individual oscillators do not occur simultaneously, in general. We consider additional systems that show phase synchrony: one where saddle-node ghosts are absent, one where the coupling is similarity dependent, and two cases of coupled chaotic oscillators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.