Abstract
Subjective scales are frequently used in the design process of head-related products to assess pressure discomfort. Nevertheless, some users lack fundamental cognitive and motor abilities (e.g., paralyzed patients). Therefore, it is vital to find non-verbal measurements of pressure discomfort and pressure pain. This study gathered the autonomic response data (heart rate and skin conductance) of 30 landmarks in head, neck and face from 31 participants experiencing pressure discomfort and pressure pain. The results indicate that pressure stimulation can change heart rate (HR) and skin conductance (SC). SC can be more useful in assessing pressure discomfort than HR for specific landmarks, and SC also possesses a faster arousal rate than HR. Moreover, HR decreased in response to pressure stimulation, while SC decreased followed by an increase. In comparisons between genders, the subjective pressure discomfort threshold (PDT) and pressure pain threshold (PPT) of women were lower than those of men, but men's autonomic responses (HR and SC) were more intense. Furthermore, there was no linear correlation between subjective pressure thresholds (PDT and PPT) and autonomic response intensity. This study has significant implications for resolving ergonomic issues (pressure discomfort and pain) associated with head-related products.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have