Abstract

A thorough assessment of Life-Cycle effects involved by vehicle lightweighting needs a rigorous evaluation of mass-induced consumption, on which energy and sustainability benefits during use stage directly depend. The paper proposes an analytical calculation procedure to estimate the weight-related energy consumption of pure Electric Vehicles (EVs), since existing literature leaves considerable room for improvement regarding this research area. The correlation between consumption and mass is expressed through the Energy Reduction Value (ERV) coefficient, which quantifies the specific consumption saving achievable through 100 kg mass reduction. The ERV is estimated for a number of heterogeneous case studies derived from real 2019 European market EV models and according to three drive cycles, to consider different driving behaviors. For the case studies under consideration, ERV ranges from 0.47 to 1.17 kWh/(100 km × 100 kg), with the variability mainly depending on vehicle size and driving cycle. Given the high uncertainty of mass-related consumption on car size, an analytical method is refined to estimate accurately the ERV for any real-world EV model, starting from vehicle technical features. Along with energy assessment, the research also evaluates the environmental implications of lightweight design by means of the Impact Reduction Value (IRV), which is estimated for three distinct electricity grid mixes. Finally, the ERV/IRV modeling approach is applied to a series of comparative lightweight case studies taken from the literature. Such an application demonstrates the effective utility of the work to reduce the uncertainty for all cases where no physical tests or computer-aided simulations are available.

Highlights

  • Energy-resources depletion and global climate change represent one of the major concerns for modern societies worldwide [1,2]

  • Fuel-mass correlation has been widely studied for ICE light duty vehicles, while great margins of investigation still exist for advanced powertrain technologies, especially for pure electric cars

  • The Energy Reduction Value (ERV) coefficients are estimated according to three driving cycles, both internationally standardized and developed in research activities (NEDC, World Light Test Procedure (WLTP), and All-Long Driving Cycle (ALDC)), to assess the influence of different driving styles on mass-induced consumption

Read more

Summary

Introduction

Energy-resources depletion and global climate change represent one of the major concerns for modern societies worldwide [1,2]. The literature provides a series of works that investigate a wide range of possible solutions to achieve this ambitious target, such as the use of alternative fuels, the development of more efficient propulsion technologies, vehicle downsizing, an increase in powertrain efficiency and reduction in vehicle size, aerodynamic drag, or rolling resistance [7,8,9]. Another highly promising way to provide more sustainable mobility is lightweight design.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.