Abstract
Bolted joints, with their advantages of simple structure and convenient disassembly and assembly, are widely used in complex equipment fields such as aerospace systems and weaponry. Subject to complex mechanical loads, the contact surfaces may undergo nonlinear behaviors such as contact–separation and viscous slip, leading to the nonlinear degradation of the connection stiffness, which severely threatens the safety and reliability. These have driven research on bolted joints to span multiple disciplines, from interfacial micro-friction to macro-structural dynamics. Therefore, from the field of micro-friction to macro-dynamics, this review summarizes and analyzes three major degradation models, outlines the experimental development in connected structures, and provides an overview of the numerical analysis methods for degradation simulation. This paper also looks forward to the development directions for future research on the degradation of connected structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.