Abstract

Diffusion Tensor Imaging (DTI) is widely used to find brain biomarkers for various stages of brain structural and neuronal development. Processing DTI data requires a detailed Quality Assessment (QA) to detect artifactual volumes amongst a large pool of data. Since large cohorts of brain DTI data are often used in different studies, manual QA of such images is very labor-intensive. In this paper, a deep learning-based tool is developed for quick automatic QA of 3D raw diffusion MR images. We propose a 2-step framework to automate the process of binary (i.e., 'good' vs 'poor') quality classification of diffusion MR images. In the first step, using two separately trained 3D convolutional neural networks with different input sizes, quality labels for individual Regions of Interest (ROIs) sampled from whole DTI volumes are predicted. In the second step, two distinct novel voting systems are designed and fine-tuned to predict the quality label of whole brain DTI volumes using the individual ROI labels predicted in the previous step. Our results demonstrate the validity and practicality of our tool. Specifically, using a balanced dataset of 6,940 manually-labeled 3D DTI volumes from 85 unique subjects for training, validation, and testing, our model achieves 100% accuracy via one voting system, and 98% accuracy via another voting system on the same test set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.