Abstract
We propose an automatic video segmentation method based on an optimized SaliencyCut equipped with information centroid (IC) detection according to level balance principle in physical theory. Unlike the existing methods, the image information of another dimension is provided by the IC to enhance the video segmentation accuracy. Specifically, our IC is implemented based on the information-level balance principle in the image, and denoted as the information pivot by aggregating all the image information to a point. To effectively enhance the saliency value of the target object and suppress the background area, we also combine the color and the coordinate information of the image in calculating the local IC and the global IC in the image. Then saliency maps for all frames in the video are calculated based on the detected IC. By applying IC smoothing to enhance the optimized saliency detection, we can further correct the unsatisfied saliency maps, where sharp variations of colors or motions may exist in complex videos. Finally, we obtain the segmentation results based on IC-based saliency maps and optimized SaliencyCut. Our method is evaluated on the DAVIS dataset, consisting of different kinds of challenging videos. Comparisons with the state-of-the-art methods are also conducted to evaluate our method. Convincing visual results and statistical comparisons demonstrate its advantages and robustness for automatic video segmentation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.