Abstract

Securing the verticality of foundations is a crucial factor for ensuring safety in offshore construction. The repeated intrusion-pulling method is generally used to ensure verticality in suction bucket foundation construction processes. However, it relies heavily on the experience and skills of field workers and is relatively time-consuming. To address this problem, we propose an automatic verticality securing system for large circular steel pipes based on a verticality monitoring system. This system adjusts cables at locations where verticality correction is required without changing the existing suction pile–penetration–construction process. It includes a monitoring component that provides real-time data on pipe alignment and an automatic lifting cable control system that maintains perpendicularity using data acquired from the monitoring system. The monitoring system comprises a sensor, an embedded controller, and a display program that displays the vertical information of circular steel pipes. The automatic lifting cable control system includes a controller with an algorithm for adjusting the length of the actuator. We showed that the system operates satisfactorily and secures the verticality of less than 0.2° in the suction bucket-based model experiment. Furthermore, the testbed experimental results show that our monitoring system can efficiently measure verticality information in real time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call