Abstract

A new class of fully parameterizable multiple array architectures for motion estimation in video sequences based on the Full-Search Block-Matching algorithm is proposed in this paper. This class is based on a new and efficient AB2 single array architecture with minimum latency, maximum throughput and full utilization of the hardware resources. It provides the ability to configure the target processor within the boundary values imposed for the configuration parameters concerning the algorithm setup, the processing time and the circuit area. With this purpose, a software configuration tool has been implemented to determine the set of possible configurations which fulfill the requisites of a given video coder. Experimental results using both FPGA and ASIC technologies are presented. In particular, the implementation of a single array processor configuration on a single-chip is illustrated, evidencing the ability to estimate motion vectors in real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.