Abstract

The mel-frequency cepstral coefficient (MFCC) or perceptual linear prediction (PLP) feature extraction typically used for automatic speech recognition (ASR) employ several principles which have known counterparts in the cochlea and auditory nerve: frequency decomposition, mel- or bark-warping of the frequency axis, and compression of amplitudes. It seems natural to ask if one can profitably employ a counterpart of the next physiological processing step, synaptic adaptation. We, therefore, incorporated a simplified model of short-term adaptation into MFCC feature extraction. We evaluated the resulting ASR performance on the AURORA 2 and AURORA 3 tasks, in comparison to ordinary MFCCs, MFCCs processed by RASTA, and MFCCs processed by cepstral mean subtraction (CMS), and both in comparison to and in combination with Wiener filtering. The results suggest that our approach offers a simple, causal robustness strategy which is competitive with RASTA, CMS, and Wiener filtering and performs well in combination with Wiener filtering. Compared to the structurally related RASTA, our adaptation model provides superior performance on AURORA 2 and, if Wiener filtering is used prior to both approaches, on AURORA 3 as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call