Abstract
When facing any forecasting problem not only is accuracy on the predictions sought. Also, useful information about the underlying physics of the process and about the relevance of the forecasting variables is very much appreciated. In this paper, it is presented an automatic specification procedure for models that are based on additivity assumptions and piecewise linear regression. This procedure allows the analyst to gain insight about the problem by examining the automatically selected model, thus easily checking the validity of the forecast. Monte Carlo simulations have been run to ensure that the model selection procedure behaves correctly under weakly dependent data. Moreover, comparison over other well-known methodologies has been done to evaluate its accuracy performance, both in simulated data and in the context of short-term natural gas demand forecasting. Empirical results show that the accuracy of the proposed model is competitive against more complex methods such as neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.