Abstract

Background and objectiveEpilepsy is a prevalent disorder that affects the central nervous system, causing seizures. In the current study, a novel algorithm is developed using electroencephalographic (EEG) signals for automatic seizure detection from the continuous EEG monitoring data. MethodsIn the proposed methods, the discrete wavelet transform (DWT) and orthogonal matching pursuit (OMP) techniques are used to extract different coefficients from the EEG signals. Then, some non-linear features, such as fuzzy/approximate/sample/alphabet and correct conditional entropy, along with some statistical features are calculated using the DWT and OMP coefficients. Three widely-used EEG datasets were utilized to assess the performance of the proposed techniques. ResultsThe proposed OMP-based technique along with the support vector machine classifier yielded an average specificity of 96.58%, an average accuracy of 97%, and an average sensitivity of 97.08% for different types of classification tasks. Moreover, the proposed DWT-based technique provided an average sensitivity of 99.39%, an average accuracy of 99.63%, and an average specificity of 99.72%. Conclusions: The experimental findings indicated that the proposed algorithms outperformed other existing techniques. Therefore, these algorithms can be implemented in relevant hardware to help neurologists with seizure detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call