Abstract
A new segmentation algorithm for lumen region detection and boundary extraction from gastro-intestinal (GI) images is presented. The proposed algorithm consists of two steps. First, a preliminary region of interest (ROI) representing the GI lumen is segmented by an adaptive progressive thresholding (APT) technique. Then, an adaptive filter, the Iris filter, is applied to the ROI to determine the actual region. It has been observed that the combined APT-Iris filter technique can enhance and detect the unclear boundaries in the lumen region of GI images and thus produces a more accurate lumen region, compared with the existing techniques. Experiments are carried out to determine the maximum error on the extracted boundary with respect to an expert-annotated boundary technique. Investigations show that, based on the experimental results obtained from 50 endoscopic images, the maximum error is reduced by up to 72 pixels for a 256 x 256 image representation compared with other existing techniques. In addition, a new boundary extraction algorithm, based on a heuristic search on the neighbourhood pixels, is employed to obtain a connected single pixel width outer boundary using two preferential sequence windows. Experimental results are also presented to justify the effectiveness of the proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have