Abstract
The limited battery life of modern mobile devices is one of the key problems limiting their use. Even if the offloading of computation onto cloud computing platforms can considerably extend battery duration, it is really hard not only to evaluate the cases where offloading guarantees real advantages on the basis of the requirements of the application in terms of data transfer, computing power needed, etc., but also to evaluate whether user requirements (i.e. the costs of using the cloud services, a determined QoS required, etc.) are satisfied. To this aim, this paper presents a framework for generating models to make automatic decisions on the offloading of mobile applications using a genetic programming (GP) approach. The GP system is designed using a taxonomy of the properties useful to the offloading process concerning the user, the network, the data and the application. The fitness function adopted permits different weights to be given to the four categories considered during the process of building the model. Experimental results, conducted on datasets representing different categories of mobile applications, permit the analysis of the behavior of our algorithm in different applicative contexts. Finally, a comparison with the state of the art of the classification algorithm establishes the goodness of the approach in modeling the offloading process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.