Abstract

The genetic programming (GP) evolutionary process typically introduces a large amount of redundancy and unnecessary complexity into evolved programs. Quick growth of redundant and functionally useless sections of programs can quickly overcome a GP system, exhausting system resources and causing premature termination of the system before an acceptable solution can be found. Rather than implicitly controlling the redundancy and code growth/bloat as in most of the existing approaches, this paper investigates an algebraic simplification algorithm for explicitly removing the redundancy from the genetic programs and simplifying these programs online during the evolutionary process. The new GP system with the simplification is examined and compared with a standard GP system on two regression and three classification problems of varying difficulties. The results show that the GP system employing a simplification component can achieve superior efficiency with comparable or slightly superior effectiveness to the standard GP system on these problems. The programs evolved by the new GP approach with the explicit simplification contain ``hidden patterns'' for a particular problem and are relatively simple and easy to interpret.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call