Abstract

Purpose – Surface forming control of welding bead is the fundamental study in automated welding. Considering that the vision sensing system cannot extract the height information of weld pool in pulsed GTAW process, so this paper designed a set of automatic measurement and control technology to achieve real-time arc height control via audio sensing system. The paper aims to discuss these issues. Design/methodology/approach – The experiment system is based on GTAW welding with acoustic sensor and signal conditioner. A combination denoising method was used to reduce the environmental noise and pulse interference noise. After extracting features of acoustic signal, the relationship between arc height and arc sound pressure was established by linear fitting. Then in order to improve the prediction accuracy of that model, the piecewise linear fitting method was proposed. Finally, arc height linear model of arc sound signal and arc height is divided into two parts and built in two different arc height conditions, which are arc height 3-4 and 4-5-6 mm. Findings – The combination denoising method was proved to have great effect on reducing the environmental noise and pulse interference noise. The experimental results showed that the prediction accuracy of linear model was not stable in different arc height changing state, like 3-4 and 4-5-6 mm. The maximum error was 0.635588 mm. And the average error of linear model was about 0.580487 mm, and the arc sound signal was accurately enough to meet the requirement for real-time control of arc height in pulse GTAW. Originality/value – This paper tries to make a foundation work to achieve controlling of depth of welding pool through arc sound signal, then the welding quality control. So a new idea of arc height control based on automatic measuring and processing system through arc sound signal was proposed. A new way to remove environmental noise and pulse interference noise was proposed. The results of this thesis had proved that arc sound signal was an effective features and precisely enough for online arc height monitoring during pulsed GTAW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.