Abstract
Automated segmentation of left ventricular cavity (LVC) in temporal cardiac image sequences (consisting of multiple time-points) is a fundamental requirement for quantitative analysis of cardiac structural and functional changes. Deep learning methods for segmentation are the state-of-the-art in performance; however, these methods are generally formulated to work on a single time-point, and thus disregard the complementary information available from the temporal image sequences that can aid in segmentation accuracy and consistency across the time-points. In particular, single time-point segmentation methods perform poorly in segmenting the end-systole (ES) phase image in the cardiac sequence, where the left ventricle deforms to the smallest irregular shape, and the boundary between the blood chamber and the myocardium becomes inconspicuous and ambiguous. To overcome these limitations in automatically segmenting temporal LVCs, we present a spatial sequential network (SS-Net) to learn the deformation and motion characteristics of the LVCs in an unsupervised manner; these characteristics are then integrated with sequential context information derived from bi-directional learning (BL) where both chronological and reverse-chronological directions of the image sequence are used. Our experimental results on a cardiac computed tomography (CT) dataset demonstrate that our spatial-sequential network with bi-directional learning (SS-BL-Net) outperforms existing methods for spatiotemporal LVC segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.