Abstract

We have applied an algorithm to automatically identify emission lines in laser-induced breakdown spectrometry (LIBS). A Q-switched Nd:YAG laser at 355 nm was used to ablate a high-alloy stainless steel sample. The algorithm was implemented by three parts: simulation of the set of spectra corresponding to different temperature (T) and electron density (N(e)), searching the best correlated pair of a model spectrum and an experimental one, and attributing the peaks with certain lines. In order to construct the model spectra, we used the parameters of atomic and ionic lines, levels, the mechanisms of the broadening of spectral lines, and the selected parameters of the spectrograph. The highest correlation coefficient between the model and the experimental spectrum was 0.943 for T = 0.675 eV and lg(N(e)) = 16.7 cm(-3). More than 40 emission lines were labeled automatically in the spectral region 393.34-413.04 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call