Abstract

Full natural language understanding requires identifying and analyzing the meanings of metaphors, which are ubiquitous in both text and speech. Over the last thirty years, linguistic metaphors have been shown to be based on more general conceptual metaphors, partial semantic mappings between disparate conceptual domains. Though some achievements have been made in identifying linguistic metaphors over the last decade or so, little work has been done to date on automatically identifying conceptual metaphors. This paper describes research on identifying conceptual metaphors based on corpus data. Our method uses as little background knowledge as possible, to ease transfer to new languages and to mini- mize any bias introduced by the knowledge base construction process. The method relies on general heuristics for identifying linguistic metaphors and statistical clustering (guided by Wordnet) to form conceptual metaphor candidates. Human experiments show the system effectively finds meaningful conceptual metaphors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.