Abstract

Intelligent building automation systems can reduce the energy consumption of heating, ventilation and air-conditioning (HVAC) units by sensing the comfort requirements automatically and scheduling the HVAC operations dynamically. Traditional building automation systems rely on fairly inaccurate occupancy sensors and basic predictive control using oversimplified building thermal response models, all of which prevent such systems from reaching their full potential. Such limitations can now be avoided due to the recent developments in embedded system technologies, which provide viable low-cost computing platforms with powerful processors and sizeable memory storage in a small footprint. As a result, building automation systems can now efficiently execute highly sophisticated computational tasks, such as real-time video processing and accurate thermal-response simulations. With this in mind, we designed and implemented an occupancy-predictive HVAC control system in a low-cost yet powerful embedded system (using Raspberry Pi 3) to demonstrate the following key features for building automation: (1) real-time occupancy recognition using video-processing and machine-learning techniques, (2) dynamic analysis and prediction of occupancy patterns, and (3) model predictive control for HVAC operations guided by real-time building thermal response simulations (using an on-board EnergyPlus simulator). We deployed and evaluated our system for providing automatic HVAC control in the large public indoor space of a mosque, thereby achieving significant energy savings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.