Abstract

In this paper, an automatic diagnosis system based on Linear Discriminant Analysis (LDA) and Adaptive Network based on Fuzzy Inference System (ANFIS) for hepatitis diseases is introduced. This automatic diagnosis system deals with the combination of feature extraction and classification. This automatic hepatitis diagnosis system has two stages, which feature extraction – reduction and classification stages. In the feature extraction – reduction stage, the hepatitis features were obtained from UCI Repository of Machine Learning Databases. Then, the number of these features was reduced to 8 from 19 by using Linear Discriminant Analysis (LDA). In the classification stage, these reduced features are given to inputs ANFIS classifier. The correct diagnosis performance of the LDA-ANFIS automatic diagnosis system for hepatitis disease is estimated by using classification accuracy, sensitivity and specificity analysis, respectively. The classification accuracy of this LDA-ANFIS automatic diagnosis system for the diagnosis of hepatitis disease was obtained in about 94.16%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.