Abstract
If we have two representations of a problem as constraint satisfaction problem (CSP) models, it has been shown that combining the models using channeling constraints can increase constraint propagation in tree search CSP solvers. Handcrafting two CSP models for a problem, however, is often time-consuming. In this paper, we propose model induction, a process which generates a second CSP model from an existing model using channeling constraints, and study its theoretical properties. The generated induced model is in a different viewpoint, i.e., set of variables. It is mutually redundant to and can be combined with the input model, so that the combined model contains more redundant information, which is useful to increase constraint propagation. We also propose two methods of combining CSP models, namely model intersection and model channeling. The two methods allow combining two mutually redundant models in the same and different viewpoints respectively. We exploit the applications of model induction, intersection, and channeling and identify three new classes of combined models, which contain different amounts of redundant information. We construct combined models of permutation CSPs and show in extensive benchmark results that the combined models are more robust and efficient to solve than the single models.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have