Abstract
In this paper, it is shown that a correlation criterion is the appropriate criterion for bottom-up clustering to obtain broad phonetic class regression trees for maximum likelihood linear regression (MLLR)-based speaker adaptation. The correlation structure among speech units is estimated on the speaker-independent training data. In adaptation experiments the tree outperformed a regression tree obtained from clustering according to closeness in acoustic space and achieved results comparable with those of a manually designed broad phonetic class tree.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have