Abstract
The article proposes algorithms for the automatic diagnosis of human lung diseases pneumonia and cancer, based on images obtained by radiation irradiation, which allow us to make decisions with the necessary reliability, that is, to restrict the probabilities of making possible errors to a pre-planned level. Since the information obtained from the observation is random, Wald’s sequential analysis method and Constrained Bayesian Method (CBM) of statistical hypothesis testing are used for making a decision, which allow us to restrict both types of possible errors. Both methods have been investigated using statistical simulation and real data, which fully confirmed the correctness of theoretical reasoning and the ability to make decisions with the required reliability using artificial intelligence. The advantage of CBM compared to Wald’s method is shown, which is expressed in the relative scarcity of observation results needed to make a decision with the same reliability. The possibility of implementing the proposed method in modern computerized X-ray equipment due to its simplicity and promptness of decision-making is also shown.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have