Abstract

This paper presents a computerized method for automated detection of the boundary of the os calcis on in vivo ultrasound parametric images, using an active dynamic contour model. The initial contour, defined without user interaction, is an iso-contour extracted from the textural feature space. The contour is deformed through the action of internal and external forces, until stability is reached. The external forces, which characterize image features, are a combination of gray-level information and second-order textural features arising from local cooccurrence matrices. The broadband ultrasound attenuation (BUA) value is then averaged within the contour obtained. The method was applied to 381 clinical images. The contour was correctly detected in the great majority of the cases. For the short-term reproducibility study, the mean coefficient of variation was equal to 1.81% for BUA values and 4.95% for areas in the detected region. Women with osteoporosis had a lower BUA than age-matched controls (p = 0.0005). In healthy women, the age-related decline was -0.45 dB/MHz/yr. In the group of healthy post-menopausal women, years since menopause, weight and age were significant predictors of BUA. These results are comparable to those obtained when averaging BUA values in a small region of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call