Abstract
Increasing experimental evidence points to the physiological importance of space-time correlations in signaling of cell collectives. From wound healing to epithelial homeostasis to morphogenesis, coordinated activation of biomolecules between cells allows the collectives to perform more complex tasks and to better tackle environmental challenges. To capture this information exchange and to advance new theories of emergent phenomena, we created ARCOS, a computational method to detect and quantify collective signaling. We demonstrate ARCOS on cell and organism collectives with space-time correlations on different scales in 2D and 3D. We made a new observation that oncogenic mutations in the MAPK/ERK and PIK3CA/Akt pathways of MCF10A epithelial cells hyperstimulate intercellular ERK activity waves that are largely dependent on matrix metalloproteinase intercellular signaling. ARCOS is open-source and available as R and Python packages. It also includes a plugin for the napari image viewer to interactively quantify collective phenomena without prior programming experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.