Abstract
Sleep disorders have become more common due to the modern lifestyle and stress. The most severe case of sleep disorders called apnea is characterized by a complete breaking block, leading to awakening and subsequent sleep disturbances. The automatic detection of sleep arousals is still challenging. In this paper, a novel method is presented to detect non-apnea sources of arousals during sleep using Polysomnography(PSG) recordings. After the preprocessing, a sequence-to-sequence deep neural network (DNNs) consisting of a series of Bidirectional long short-term memory (Bi-LSTM) layer, and fully connected layers were trained to classify samples in the segments. Initially, three different models were prepared for different datasets. Finally, obtaining the classification result through an ensemble model consisting of the three trained models. The result shows that the area under the receiver precision-recall curve (AUPRC) is 0.59 for the test dataset exceeding the performance of the classifiers in the existing literature.Clinical relevance- Analyzing Polysomnographic recordings is a time consuming a critical process yet to identify sleep disorders. These recordings span several hours and contain different data streams that include EEG, EMG, etc. This paper proposes a system that can automatically detect respiratory effort-related arousals using a deep neural network from Polysomnographic Recordings. By automating this process with a machine learning-based solution that can eliminate the manual process while facilitating further improvements of the system with future data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.