Abstract

This paper addresses the automatic detection of microaneurysms in color fundus images, which plays a key role in computer assisted diagnosis of diabetic retinopathy, a serious and frequent eye disease. The algorithm can be divided into four steps. The first step consists in image enhancement, shade correction and image normalization of the green channel. The second step aims at detecting candidates, i.e. all patterns possibly corresponding to MA, which is achieved by diameter closing and an automatic threshold scheme. Then, features are extracted, which are used in the last step to automatically classify candidates into real MA and other objects; the classification relies on kernel density estimation with variable bandwidth. A database of 21 annotated images has been used to train the algorithm. The algorithm was compared to manually obtained gradings of 94 images; sensitivity was 88.5% at an average number of 2.13 false positives per image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.