Abstract

Gadolinium-enhancing lesions in brain magnetic resonance imaging of multiple sclerosis (MS) patients are of great interest since they are markers of disease activity. Identification of gadolinium-enhancing lesions is particularly challenging because the vast majority of enhancing voxels are associated with normal structures, particularly blood vessels. Furthermore, these lesions are typically small and in close proximity to vessels. In this paper, we present an automatic, probabilistic framework for segmentation of gadolinium-enhancing lesions in MS using conditional random fields. Our approach, through the integration of different components, encodes different information such as correspondence between the intensities and tissue labels, patterns in the labels, or patterns in the intensities. The proposed algorithm is evaluated on 80 multimodal clinical datasets acquired from relapsing-remitting MS patients in the context of multicenter clinical trials. The experimental results exhibit a sensitivity of 98% with a low false positive lesion count. The performance of the proposed algorithm is also compared to a logistic regression classifier, a support vector machine and a Markov random field approach. The results demonstrate superior performance of the proposed algorithm at successfully detecting all of the gadolinium-enhancing lesions while maintaining a low false positive lesion count.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.