Abstract
Polar-orbiting satellites have been widely used for detecting sea fog because of their wide coverage and high spatial and spectral resolution. FengYun-3D (FY-3D) is a Chinese satellite that provides global sea fog observation. From January 2021 to October 2022, the backscatter and virtual file manager products from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) were used to label samples of different atmospheric conditions in FY-3D images, including clear sky, sea fog, low stratus, fog below low stratus, mid–high-level clouds, and fog below the mid–high-level clouds. A 13-dimensional feature matrix was constructed after extracting and analyzing the spectral and texture features of these samples. In order to detect daytime sea fog using a 13-dimensional feature matrix and CALIPSO sample labels, four supervised classification models were developed, including Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Neural Network. The accuracy of each model was evaluated and compared using a 10-fold cross-validation procedure. The study found that the SVM, KNN, and Neural Network performed equally well in identifying low stratus, with 85% to 86% probability of detection (POD). As well as identifying the basic components of sea fog, the SVM model demonstrated the highest POD (93.8%), while the KNN had the lowest POD (92.4%). The study concludes that the SVM, KNN, and Neural Network can effectively distinguish sea fog from low stratus. The models, however, were less effective at detecting sub-cloud fog, with only 11.6% POD for fog below low stratus, and 57.4% POD for fog below mid–high-level clouds. In light of this, future research should focus on improving sub-cloud fog detection by considering cloud layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.