Abstract
In recent years, the preservation and conservation of ancient cultural heritage necessitate the advancement of sophisticated non-destructive testing methodologies to minimize potential damage to artworks. Therefore, this study aims to develop an advanced method for detecting defects in ancient polyptychs using infrared thermography. The test subjects are two polyptych samples replicating a 14th-century artwork by Pietro Lorenzetti (1280/85–1348) with varied pigments and artificially induced defects. To address these challenges, an automatic defect detection model is proposed, integrating numerical simulation and image processing within the Faster R-CNN architecture, utilizing VGG16 as the backbone network for feature extraction. Meanwhile, the model innovatively incorporates the efficient channel attention mechanism after the feature extraction stage, which significantly improves the feature characterization performance of the model in identifying small defects in ancient polyptychs. During training, numerical simulation is utilized to augment the infrared thermal image dataset, ensuring the accuracy of subsequent experimental sample testing. Empirical results demonstrate a substantial improvement in detection performance, compared with the original Faster R-CNN model, with the average precision at the intersection over union = 0.5 increasing to 87.3% and the average precision for small objects improving to 54.8%. These results highlight the practicality and effectiveness of the model, marking a significant progress in defect detection capability, providing a strong technical guarantee for the continuous conservation of cultural heritage, and offering directions for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.