Abstract
Automatic bridge surface defect detection is of wide concern; it can save human resources and improve work efficiency. The object detection algorithm, especially the You Only Look Once (YOLO) series of networks, has important potential in real-time object detection because of its fast detection speed, and it provides an efficient and automatic detection method for bridge surface defect detection. Hence, this paper employs an improved YOLOv3 network for detecting bridge surface defects (cracks and exposed rebar) and compares the effects of the advanced YOLOv2, YOLOv3 and faster region-based convolutional neural network (Faster RCNN) in bridge surface defect detection, and then two approaches (transfer learning and data augmentation) are used to improve the YOLOv3. The results confirm that, by combining high- and low-resolution feature images, the YOLOv3 improves the detection effect of the YOLOv2 (using single-resolution feature images); the average precision (AP) value of the improved YOLOv3 (0.9–0.91) is 6–10% higher than that of the YOLOv2 (0.83–0.86). Then, the anti-noise abilities of the YOLOv2 and YOLOv3 are studied by introducing white Gaussian noise, and the YOLOv3 is better than the YOLOv2. Simultaneously, the YOLO series of detectors perform better in detection speed; the detection speed of the improved YOLOv3 (FPS (frames per second) = 23.8) is 103 times that of the Faster RCNN (FPS = 0.23) with comparable mAP values (improved YOLOv3 = 0.91; Faster RCNN = 0.9). It is demonstrated that, in consideration of detection precision and speed, the proposed improved YOLOv3 is a decent detector for fast and real-time bridge defect detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.