Abstract
Even small defects the main patterns can create killer defects the wafer, whereas the same defect or near the decorative patterns may be completely benign to the wafer functionality. This ambiguity often causes operators and engineers to put a mask on hold to be analyzed by an AIMS™ tool which slows the manufacturing time and increases mask cost. In order to streamline the process, mask shops need a reliable way to quickly identify the wafer impact of defects during mask inspection review reducing the number of defects requiring AIMS™ analysis. Source Mask Optimization (SMO) techniques are now common sub 20nm node critical reticle patterns These techniques create complex reticle patterns which often makes it difficult for inspection tool operators to identify the desired wafer pattern from the surrounding nonprinting patterns in advanced masks such as SMO, Inverse Lithography Technology (ILT), Negative Tone Development (NTD). In this study, we have tested a system that generates aerial simulation images directly from the inspection tool images. The resulting defect dispositions from a program defect test mask along with numerous production mask defects have been compared to the dispositions attained from AIMS™ analysis. The results of our comparisons are presented, as well as the impact to mask shop productivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have