Abstract

Brain extraction is a fundamental prerequisite step in neuroimage analysis for fetus. Due to surrounding maternal tissues and unpredictable movement, brain extraction from fetal Magnetic Resonance (MR) images is a challenging task. In this paper, we propose a novel deep learning-based multi-step framework for brain extraction from 3D fetal MR images. In the first step, a global localization network is applied to estimate probability maps for brain candidates. Connected-component labeling algorithm is applied to eliminate small erroneous components and accurately locate the candidate brain area. In the second step, a local refinement network is implemented in the brain candidate area to obtain fine-grained probability maps. Final extraction results are derived by a fusion network with the two cascaded probability maps obtained from previous two steps. Experimental results demonstrate that our proposed method has superior performance compared with existing deep learning-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.