Abstract
To address emerging security threats, various malware detection methods have been proposed every year. Therefore, a small but representative set of malware samples are usually needed for detection model, especially for machine-learning-based malware detection models. However, current manual selection of representative samples from large unknown file collection is labor intensive and not scalable. In this paper, we firstly propose a framework that can automatically generate a small data set for malware detection. With this framework, we extract behavior features from a large initial data set and then use a hierarchical clustering technique to identify different types of malware. An improved genetic algorithm based on roulette wheel sampling is implemented to generate final test data set. The final data set is only one-eighteenth the volume of the initial data set, and evaluations show that the data set selected by the proposed framework is much smaller than the original one but does not lose nearly any semantics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.