Abstract
Accurate and fast detection of event related potential (ERP) components is an unresolved issue in neuroscience and critical health care. Mismatch negativity (MMN) is a component of the ERP to an odd stimulus in a sequence of identical stimuli which has good correlation with coma awakening. All of the previous studies for MMN detection are based on visual inspection of the averaged ERPs (over a long recording time) by a skilled neurophysiologist. However, in practical situations, such an expert may not be available or familiar with all aspects of evoked potential methods. Further, we may miss important clinically essential events due to the implicit averaging process used to acquire the ERPs. In this paper we propose a practical machine learning approach for automatic and continuous assessment of the ERPs for detecting the presence of the MMN component. The proposed method is realized in a classification framework. Performance of the proposed method is demonstrated on 22 healthy subjects through a leave-one subject-out strategy where the MMN components are identified with about 93% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.