Abstract

The human primary motor cortex during a unilateral finger reactive movement to visual stimuli was examined by magnetoencephalography (MEG) measurement. The brain activity related to movement execution (the motor activity contralateral to the movement side) was estimated based on movement onset conditions and reaction times. The movement onset conditions were: (1) a simple reaction time task with a visual stimulus, (2) a Go/NoGo task with different colored stimuli and (3) a Go/NoGo task with different position stimuli. Dipole source estimation was done, and the time course of the motor activity was calculated. The results showed that not only the visual response but also the contralateral motor activity was evoked by the stimulus in all cases, and even when the NoGo stimulus was given. The motor activity in the primary motor cortex was conjectured to consist of two dominant components: the first component for the movement preparation and the second component for the movement execution. Because the first component happened with a constant delay time from the stimulus even in the NoGo case, the first component, coming through a fast pathway for signals from visual stimulus processing to the motor cortex without any intervening cognitive processing, was conjectured to make the motor cortex prepare for the forthcoming movement onset automatically regardless of the stimulus instruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call