Abstract
Cranial anthropometric reference points (landmarks) play an important role in craniofacial reconstruction and identification. Knowledge to detect the position of landmarks is critical. This work aims to locate landmarks automatically. Landmarks positioning using Surface Curvature Feature (SCF) is inspired by conventional methods of finding landmarks based on morphometrical features. Each cranial landmark has a unique shape. With the appropriate 3D descriptors, the computer can draw associations between shapes and landmarks using machine learning. The challenge in classification and detection in three-dimensional space is to determine the model and data representation. Using three-dimensional raw data in machine learning is a serious volumetric issue. This work uses the Surface Curvature Feature as a three-dimensional descriptor. It extracts the local surface curvature shape into a projection sequential value (depth). A machine learning method is developed to determine the position of landmarks based on local surface shape characteristics. Classification is carried out from the top-n prediction probabilities for each landmark class, from a set of predictions, then filtered to get pinpoint accuracy. The landmark prediction points are hypothetically clustered in a particular area, so a cluster-based filter is appropriate to isolate them. The learning model successfully detected the landmarks, with the average distance between the prediction points and the ground truth being 0.0326 normalized units. The cluster-based filter is implemented to increase accuracy compared to the ground truth. Thus, SCF is suitable as a 3D descriptor of cranial landmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.