Abstract

Huge amounts of surgical data are recorded during video-monitored surgery. Content-based video retrieval systems intent to reuse those data for computer-aided surgery. In this paper, we focus on real-time recognition of cataract surgery steps: the goal is to retrieve from a database surgery videos that were recorded during the same surgery step. The proposed system relies on motion features for video characterization. Motion features are usually impacted by eye motion or zoom level variations, which are not necessarily relevant for surgery step recognition. Those problems certainly limit the performance of the retrieval system. We therefore propose to refine motion feature extraction by applying pre-processing steps based on a novel pupil center and scale tracking method. Those pre-processing steps are evaluated for two different motion features. In this paper, a similarity measure adapted from Piciarelli's video surveillance system is evaluated for the first time in a surgery dataset. This similarity measure provides good results and for both motion features, the proposed preprocessing steps improved the retrieval performance of the system significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.