Abstract

PurposeThe purpose of this paper is to introduce a novel technique for printing with multiple materials using the DLP method. Digital-light-processing (DLP) printing uses a digital projector to selectively cure a full layer of resin using a mask image. One of the challenges with DLP printing is the difficulty of incorporating multiple materials within the same part. As the part is cured within a liquid basin, resin switching introduces issues of cross-contamination and significantly increased print time.Design/methodology/approachThe material handling challenges are investigated and addressed by taking inspiration from automated storage and retrieval systems and using an active cleaning solution. The material tower is a compact design to facilitate the storage and retrieval of different materials during the printing process. A spray mechanism is used for actively cleaning excess resin from the part between material changes.FindingsChallenges encountered within the multi-material DLP technology are addressed and the experimental prototype validates the proposed solution. The system has a cleaning effectiveness of over 90 per cent in 15 s with the build area of 72 inches, in contrast to the previous work of 50 per cent cleaning effectiveness in 2 min with only 6 inches build area. The method can also hold more materials than the previous work.Originality/valueThe techniques from automated storage and retrieval system is applied to develop a storage system so that the time complexity of swapping is reduced from linear to constant. The whole system is sustainable and scalable by using a spraying mechanism. The design of the printer is modular and highly customizable, and the material waste for build materials and cleaning solution is minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.