Abstract

This study introduces an innovative wearable neck piezoelectric sensor (NPS) that measures snoring vibrations and carotid pulsations, offering a significant advancement in sleep apnea syndrome (SAS) diagnosis. Utilizing advanced algorithms like discrete wavelet transform and dynamic thresholding, the NPS detects snoring events with 83% accuracy, comparable to polysomnography, and calculates key metrics such as the snoring index (SI) and normalized snoring vibration energy (SVE%). Unlike traditional methods, the SVE% from NPS directly correlates with subjective assessments of snoring severity. It also measures carotid pulsation metrics such as pulse rate and the standard deviation of normal-to-normal intervals, achieving 85% accuracy in sleep phase determination against polysomnography. Moreover, NPS surpasses traditional methods in SI and SVE% accuracy, closely aligning with clinical evaluations of SAS severity. This user-friendly technology automates the measurement of critical snoring metrics, transforming SAS diagnosis and treatment by enhancing accessibility and efficiency for healthcare providers and patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.