Abstract
Road markings, including road lanes and symbolic road markings, can convey abundant guidance information to autonomous driving cars. However, recent works have paid less attention to the recognition of symbolic road markings compared with road lanes. In this study, a road-marking-segmentation dataset named the RMD (Road Marking Dataset) is introduced to compensate for the lack of datasets and the limitations of the existing datasets. Furthermore, we propose a novel multiscale attention-based dilated convolutional neural network (MSA-DCNN) to tackle the proposed RMD. The proposed method employs multiscale attention to merge the weighting outputs of adjacent multiscale inputs, and dilated convolution to capture spatial-context information. The performance analysis shows that the proposed MSA-DCNN yields the best results by combining multiscale attention and dilated convolution. Additionally, the proposed method gains the mIoU of 74.88%, which is a significant improvement over the existing techniques.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.