Abstract

Extracellular alkalinization mediated by the inhibition of plasma membrane-located proton pumping ATPases hallmarks the initiation of defense signaling in plant cells. Early defense responses also include depolarization of the plasma membrane, increase in cytosolic Ca2+ concentration, and an oxidative burst. Together these early signaling events lead to the activation of plant immunity. The transient alkalinization response is triggered by well-studied pathogen-derived and plant endogenous elicitors, including, for example, bacterial flagellin, fungal chitin, and tomato systemin in both model and agronomic species. Employing cell suspension cultures, extracellular alkalinization can be easily assessed by measuring the elicitor-induced pH changes of the cultivating medium. Here, we provide a protocol for an improved alkalinization assay in a system which is able to simultaneously monitor multiple samples, and fully automatically transfer customizable real-time pH records. In this system flagellin, chitin and systemin elicit robust time- and dose-dependent responses, proving a powerful tool for assessing plant early defense signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call