Abstract

A novel wavelet-based algorithm for real-time detection of epileptic seizures using scalp EEG is proposed. In a moving-window analysis, the EEG from each channel is decomposed by wavelet packet transform. Using wavelet coefficients from seizure and nonseizure references, a patient-specific measure is developed to quantify the separation between seizure and nonseizure states for the frequency range of 1-30 Hz. Utilizing this measure, a frequency band representing the maximum separation between the two states is determined and employed to develop a normalized index, called combined seizure index (CSI). CSI is derived for each epoch of every EEG channel based on both rhythmicity and relative energy of that epoch as well as consistency among different channels. Increasing significantly during ictal states, CSI is inspected using one-sided cumulative sum test to generate proper channel alarms. Analyzing alarms from all channels, a seizure alarm is finally generated. The algorithm was tested on scalp EEG recordings from 14 patients, totaling approximately 75.8 h with 63 seizures. Results revealed a high sensitivity of 90.5%, a false detection rate of 0.51 h(-1) and a median detection delay of 7 s. The algorithm could also lateralize the focus side for patients with temporal lobe epilepsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.