Abstract

The most prominent myocardial voltage-gated sodium channel, NaV1.5, is a major drug target for treating cardiovascular disease. However, treatment determination and therapeutic development are complicated partly by an inadequate understanding of how the density of SCN5A, the gene that encodes NaV1.5, relates to treatment response and disease prognosis. To address these challenges, imaging agents derived from NaV1.5 blocking therapeutics have been employed in positron emission tomography (PET) imaging to infer how SCN5A expression relates to human disease in vivo. Herein, we describe the preparation of a novel fluorine-18 labelled analogue of lidocaine, a known NaV1.5 inhibitor, and compare this agent to a previously described analogue. Evidence from rodent and non-human primate PET imaging experiments suggests that the imaging utility of these agents may be limited by rapid metabolism and clearance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.