Abstract
Detecting and monitoring surface deformation using radar satellite data is vital in geohazard assessment. Sentinel-1 has provided unprecedented spatial and temporal resolution, but data processing is complicated and poses computational challenges. Although software and tools exist, each with its own limitations. SNAP-ESA is notable for its user-friendly interface and stable performance in Interferometric Synthetic Aperture Radar (InSAR). However, SNAP-ESA lacks a flexible approach for generating interferometric time series stacks for Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques and faces computational challenges over large areas. Here, we present an automated Python workflow, SNAPWF, using SNAP-ESA to enable efficient PSI and SBAS interferometric time series stacks generation using flexible network graphs. SNAPWF has been implemented on a dedicated geospatial computing platform, enabling efficient performance over large areas. Results confirm its ability to generate PSI and SBAS interferometric stacks using full Sentinel-1 scenes and achieve results comparable to existing software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.