Abstract

Security testing is fundamental to identifying security vulnerabilities on smart home-based IoT devices. For this, penetration testing is the most prominent and effective solution. However, testing the IoT manually is cumbersome and time-consuming. In addition, penetration testing requires a deep knowledge of the possible attacks and the available hacking tools. Therefore, this study emphasises building an automated penetration testing framework to discover the most common vulnerabilities in smart home-based IoT devices. This research involves exploring (studying) different IoT devices to select five devices for testing. Then, the common vulnerabilities for the five selected smart home-based IoT devices are examined, and the corresponding penetration testing tools required for the detection of these vulnerabilities are identified. The top five vulnerabilities are identified from the most common vulnerabilities, and accordingly, the corresponding tools for these vulnerabilities are discovered. These tools are combined using a script which is then implemented into a framework written in Python 3.6. The selected IoT devices are tested individually for known vulnerabilities using the proposed framework. For each vulnerability discovered in the device, the Common Vulnerability Scoring System (CVSS) Base score is calculated and the summation of these scores is taken to calculate the total score (for each device). In our experiment, we found that the Tp-Link Smart Bulb and the Tp-Link Smart Camera had the highest score and were the most vulnerable and the Google Home Mini had the least score and was the most secure device of all the devices. Finally, we conclude that our framework does not require technical expertise and thus can be used by common people. This will help improve the field of IoT security and ensure the security of smart homes to build a safe and secure future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.