Abstract

Automated operational modal analysis (AOMA) is a common standard for unsupervised, data-driven, and output-only system identification, utilizing ambient vibrations as an environmental input source. However, conventional AOMA approaches apply the -means clustering algorithm (with ) to discern possibly physical and certainly mathematical modes. That is not totally appropriate due to the intrinsic tendency of -means to produce similarly sized clusters, as well as its limitation to approximately normally distributed variables. Hence, a novel approach, based on the density-based clustering algorithm Density-Based Spatial Clustering of Applications with Noise (DBSCAN), is introduced here. Among other technical advantages, this enables to automatically detect and remove outliers. A data-driven strategy for the DBSCAN parameter selection is proposed as well, to make the whole procedure fully automated. This methodology is then validated on a case of aeronautical interest, an Airbus Helicopter H135 bearingless main rotor blade, and compared to more classic strategies for the same case study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call