Abstract

Automated detection and segmentation of cell nuclei is an essential step in breast cancer histopathology, so that there is improved accuracy, speed, level of automation and adaptability to new application. The goal of this paper is to develop efficient and accurate algorithms for detecting and segmenting cell nuclei in 2-D histological images. In this paper we will implement the utility of our nuclear segmentation algorithm in accurate extraction of nuclear features for automated grading of (a) breast cancer, and (b) distinguishing between cancerous and benign breast histology specimens. In order to address the issue the scheme integrates image information across three different scales: (1) low level information based on pixel values, (2) high-level information based on relationships between pixels for object detection, and(3)domain-specific information based on relationships between histological structures. Low-level information is utilized by a Bayesian Classifier to generate likelihood that each pixel belongs to an object of interest. High-level information is extracted in two ways: (i) by a level-set algorithm, where a contour is evolved in the likelihood scenes generated by the Bayesian classifier to identify object boundaries, and (ii) by a template matching algorithm, where shape models are used to identify glands and nuclei from the low-level likelihood scenes. Structural constraints are imposed via domain specific knowledge in order to verify whether the detected objects do indeed belong to structures of interest. The efficiency of our segmentation algorithm is evaluated by comparing breast cancer grading and benign vs. cancer discrimination accuracies with corresponding accuracies obtained via manual detection and segmentation of glands and nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.