Abstract

A novel approach for the online coupling of solid-phase microextraction (SPME) and liquid chromatography (LC) is introduced. An innovative Si@GO@βCD coated needle-sleeve extractant device was developed and then employed in the automated online SPME-LC-UV determination of estrogen-like isoflavones from human urine samples. The extractant SPME device is easily attachable at the endpoint of an analytical syringe needle and operated by a lab-made autosampler. Fully automated online SPME-LC is accomplished by proper autosampler programming to perform the following steps: i) the analytes extraction by direct immersion of the extractant device into the stirred sample, ii) a rinsing step iii) the analytes desorption/enrichment, iv) the online transference of the extract to the LC injection valve. Besides allowing the online SPME hyphenation, this extraction modality efficiently addressed the drawbacks associated with the clogging and dispersion of graphene-based microextraction techniques performed in packed-bed and dispersive formats. The main extraction parameters and the performance of the automated online SPME-LC method developed were carefully studied. The results show a good sensitivity, reliability, and straightforward analytical strategy for the determination of organic compounds in complex samples. The detection limit of the method was 20 μg L1 for DAI and 10 μg L−1 for GEN, FOR and BIO. The intra-day RSD was below 10% and inter-day RSD was below 13%. The total analysis time was less than 17 min per sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call