Abstract

Coupling solid-phase microextraction (SPME) with ambient mass spectrometry using surface coated wooden-tip probe was achieved for the first time and applied in the analysis of ultra trace perfluorinated compounds (PFCs) in complex environmental and biological samples. We modified n-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride on the surface of sharp wooden tip via silanization to form a novel SPME probe, which was then used for highly selective enrichment of PFCs from complex matrices and applied as a solid substrate to induce electrospray ionization for mass spectrometric analysis. The porous structural surface together with the dual extraction mechanisms (reversed phase adsorption and ion exchange adsorption) demonstrated that the SPME probe has an outstanding enrichment capacity, enhancing sensitivity by approximately 4000-8000 folds for the detection in aqueous samples, and 100-500-fold in whole blood and milk samples. The method showed good linearity, with correlation coefficient values (r(2)) of no less than 0.9931 for eight target PFCs. The limits of detection and qualification of the eight PFCs were 0.06-0.59 and 0.21-1.98 ng/L, respectively. Quantification of real samples was achieved by isotope internal standard calibration curve method or isotope dilution method, and ultratrace levels of PFCs present in lake water, river water, whole blood, and milk samples had been successfully detected and qualified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call